Cell - Centered Scheme For Heterogeneous

نویسندگان

  • Thanh Hai Ong
  • Robert Eymard
  • Christophe Le Potier
  • Boris Andreianov
  • Daniele Di Pietro
  • Bruno Després
  • Raphaèle Herbin
چکیده

We present a new scheme for the discretization of heterogeneous anisotropic di usion problems on general meshes. With light assumptions, we show that the algorithm can be written as a cell-centered scheme with a small stencil and that it is convergent for discontinuous tensors. The key point of the proof consists in showing both the strong and the weak consistency of the method. Besides, we study non-linear corrections to correct the FECC scheme, in order to satisfy the discrete maximum principle (DMP). The e ciency of the scheme is demonstrated through numerical tests of the 5th & 6th International Symposium on Finite Volumes for Complex Applications FVCA 5 & 6. Moreover, the comparison with classical nite volume schemes emphasizes the precision of the method. We also show the good behaviour of the algorithm for nonconforming meshes. In addition, we give some numerical tests to check the existence for the non-linear FECC schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mass Conservative Method for Numerical Modeling of Axisymmetric flow

In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...

متن کامل

A linearity-preserving cell-centered scheme for the heterogeneous and anisotropic diffusion equations on general meshes

In this paper a finite volume scheme for the heterogeneous and anisotropic diffusion equations is proposed on general, possibly nonconforming meshes. This scheme has both cell-centered unknowns and vertex unknowns. The vertex unknowns are treated as intermediate ones and are expressed as a linear weighted combination of the surrounding cell-centered unknowns, which reduces the scheme to a compl...

متن کامل

A novel key management scheme for heterogeneous sensor networks based on the position of nodes

Wireless sensor networks (WSNs) have many applications in the areas of commercial, military and environmental requirements. Regarding the deployment of low cost sensor nodes with restricted energy resources, these networks face a lot of security challenges. A basic approach for preparing a secure wireless communication in WSNs, is to propose an efficient cryptographic key management protocol be...

متن کامل

Monotone finite volume schemes for diffusion equations on polygonal meshes

Weconstruct a nonlinear finite volume (FV) scheme for diffusion equationon star-shapedpolygonalmeshes andprove that the scheme ismonotone, i.e., it preserves positivity of analytical solutions for strongly anisotropic and heterogeneous full tensor coefficients. Our scheme has only cell-centered unknowns, and it treats material discontinuities rigorously and offers an explicit expression for the...

متن کامل

Finite volume hydromechanical simulation in porous media

Cell-centered finite volume methods are prevailing in numerical simulation of flow in porous media. However, due to the lack of cell-centered finite volume methods for mechanics, coupled flow and deformation is usually treated either by coupled finite-volume-finite element discretizations, or within a finite element setting. The former approach is unfavorable as it introduces two separate grid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012